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In this paper a non-linear discrete-continuous model of a multi-mass system
torsionally deformed with a local non-linearity is investigated. It is assumed that
the characteristic of the local non-linearity is of a soft type. Four non-linear
functions describing this characteristic are proposed. In the discussion, the
approach utilizing the wave solution of the equations of motion is used, similarly as
for the case of a hard characteristic in reference [1]. The numerical analysis focuses
on the investigation of the e!ect of the local non-linearity with a soft characteristic
for two-mass and three-mass torsional systems on amplitude}frequency curves in
selected cross-sections of the considered systems.
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1. INTRODUCTION

The paper is concerned with the non-linear dynamics of discrete-continuous
models of torsional mechanical systems. These systems consist of shafts with
a circular cross-section connected by means of rigid bodies. The displacements of
shaft cross-sections are described by means of the classical wave equation, as in
reference [1]. In many drive systems gears, clutches, etc., having non-linear
characteristics can occur [2]. Such non-linearities in mechanical systems have
a local character, which means that in discrete-continuous models they can be
taken into account in appropriate cross-sections. The presence of local
non-linearities in the mechanical system can have important consequences for its
overall dynamic behaviour. Some e!ects of the local non-linearities in
discrete-continuous systems have been already shown e.g., in references [1, 3].

Reference [1] is concerned with the dynamic analysis of a non-linear
discrete-continuous torsional system with a non-linearity represented by a spring
having a hard characteristic of the Du$ng type. Below, a similar discrete-
continuous model of the mechanical system torsionally deformed is studied.
However, the non-linear spring has the characteristic of a soft type. The moment of
the non-linear spring is described by four non-linear functions: (1) a polynomial of
third degree, (2) a sinusoidal function, (3) a hyperbolic tangent function, and (4) an
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exponential function. Such types of functions are justi"ed by numerous
experimental studies [4]. The polynomial function can be used in the case of the
spring having soft as well as hard characteristics, while the remaining ones only in
soft characteristics. The introduction of three other functions for non-linear
moments not only expands the discussion on local non-linearities but also enables
one to avoid such e!ect as the escape which may appear in numerical solutions for
non-linear models. Some examples of this escape are shown in reference [5] for
discrete models.

The considerations are carried out by means of the method using the wave
solution of the equations of motion which enables one to determine displacements
in arbitrary cross-sections of shafts. Solutions can be obtained in steady as well as
in transient states. In numerical calculations the e!ect of various non-dimensional
parameters on amplitude}frequency curves for angular displacements and
non-linear moments for a two-mass and a three-mass system is investigated.

The method applied in the paper was veri"ed experimentally. The test-rig used
for torsional analysis is a transmission system driven by an electric servo-motor. Its
detailed description can be found in reference [6]. Theoretical considerations for
the appropriate discrete-continuous model are presented in reference [7]. The
comparable studies given in reference [7] show a very good agreement between the
experimental data and the numerical solutions.

2. ASSUMPTIONS, MOMENTS FOR THE NON-LINEAR SPRING

Consider the discrete-continuous model of a system which consists of a suitable
number of rigid bodies connected by shafts, Figure 1. The shafts only deform in
torsion-like manner and their central axis, together with elements settled on them,
coincide with the main axis of the torsional system. It is assumed that the x-axis is
parallel to the main axis of the system, and its origin coincides with the location of
the left end "rst shaft in an undisturbed state at time instant t"0.

The ith shaft, i"1, 2,2, N, Figure 1, is characterized by the length l
i
, density o,

shear modulus G and polar moment of inertia I
0i

. The ith rigid body of the model is
characterized by mass moment of inertia J

i
.

In the considered discrete-continuous model a single local non-linearity is taken
into account by means of a non-linear discrete spring. This element is located in the
cross-section where the rigid body J

i
is "xed. It can represent, for example,

mechanical properties of various elements, such as clutches and gears, having
a non-linear characteristic.

The moment of a non-linear spring can be generally described by an arbitrary
non-linear function [2]. In the discussion of the dynamics of non-linear discrete
systems the polynomial of the third degree is exploited most widely for the
description of the considered non-linearities [8, 9]. In the present paper, it is used in
the case of the discrete-continuous torsional system. Analogous to non-linearities in
discrete systems, the moment for the non-linear spring with a symmetric
characteristic could be described by the following function:

M
sp

(t )"k
1
h
1
(x, t)#k

3
h3
1
(x, t) for x"0, (1)
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Figure 1. The non-linear discrete-continuous model of a torsional system.

where h
i
(x, t) is an angular displacement of the ith shaft and k

1
and k

3
represent

linear and non-linear terms in equation (1) respectively. The polynomial (1) includes
the soft characteristic for k

3
(0, the linear case for k

3
"0 and the hard

characteristic for k
3
'0.

In many non-linear discrete systems, where this function with k
3
(0 (the soft

characteristic) is used, such phenomena as escapes may occur [5]. In order to try to
avoid the divergence of numerical solutions to in"nity in the case of the soft
characteristic, apart from the polynomial function (1) with k

3
(0 the following

three functions are proposed for the description of moments for the non-linear
spring applied in the cross-section x"0

M
sp

(t)"A sin (Bh
1
), (2)

M
sp

(t )"A tanh (Bh
1
), (3)

M
sp

(t )"G
A(!1#exp (Bh

1
)) for h

1
)0,

A(1!exp (!Bh
1
)) for h

1
*0.

, (4)

The constants A and B are selected in such a way that the expansions in series of
functions (2)} (4) give the same linear case and that the polynomial function (1) and
functions (2)}(4) have maximum values close to each other, and

AB"k
1
, AB3"!6k

3
. (5)

In the discussed non-linear model an external loading M(t) can be applied to an
arbitrary rigid body. In the present paper it is assumed that only the rigid body J

1
is

loaded by the external loading M(t). Damping in the system is taken into account
by an equivalent external and internal damping applied in selected cross-sections. It
is expressed by the following moments:

M
di
(t)"d

i
h
i, t

(x, t) and M
Di

(t)"GI
0i

D
i
h
i,xt

(x, t), (6)

where d
i
and D

i
are the coe$cients of the equivalent external and internal damping,

respectively, and the comma denotes partial di!erentiation. Moreover, it is
assumed that displacements and velocities of shaft cross-sections are equal to zero
at time instant t"0.
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3. GOVERNING EQUATIONS

Under the above assumptions, the determination of angular displacements
h
i
(x, t) of the shaft cross-sections reduces to the solution of classical wave equations

h
i, tt

!c2h
i,xx

"0, i"1, 2,2, N (7)

with zero initial conditions

h
i
(x, 0)"h

i, t
(x, 0)"0, i"1, 2,2, N, (8)

and with the following non-linear boundary conditions:

M (t)!J
1
h
1, tt

#GI
01

(D
1
h
1,xt

#h
1,x

)!d
1
h
1,t
!M

sp
(t)"0 for x"0,

h
i
(x, t)"h

i`1
(x, t) for x"

i
+
k/1

l
k
, i"1, 2,2, N!1 (9)

!J
i`1

h
i, tt

!GI
0i

(D
i
h
i,xt

#h
i,x

)#GI
0, i`1

(D
i`1

h
i`1,xt

#h
i`1,x

)

!d
i`1

h
i, t
"0 for x"

i
+
k/1

l
k
, i"1, 2,2, N!1,

!J
N`1

h
N, tt

!GI
0N

(D
N
h
N,xt

#h
N,x

)!d
N`1

h
N, t

"0 for x"
N
+
k/1

l
k
,

where c2"G/o.
Upon the introduction of the following non-dimensional quantities:

xN "x/l
1
, tN"ct/l

1
, hM

i
"h

i
/h

0
, dM

i
"d

i
l
1
/(J

1
c), DM
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"D
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1
, (10)
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1
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relations (7)} (9) take the form

h
i, tt

!h
i,xx

"0, i"1, 2,2, N, (11)

h
i
(x, 0)"h

i, t
(x, 0)"0, i"1, 2,2, N, (12)
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, (13)

where h
0

is a "xed angular displacement, and the bars denoting non-dimensional
quantities are omitted for convenience.
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The solutions of equations (11) similar to reference [1] are sought in the form

h
i
(x, t)"f

i
(t!x)#g

iAt#x!2
i~1
+
k/1

l
kB , i"1, 2,2, N, (14)

where the functions f
i
and g

i
represent waves caused by the external loading M(t)

propagating in the ith shaft in a direction consistent and opposite to x-axis,
correspondingly. The functions f

i
and g

i
are continuous and equal to zero for

negative arguments.
Substituting solution (14) in the boundary conditions (13) and denoting the

largest argument in each boundary condition separately by z, we obtain the
following set of ordinary di!erential equations for unknown functions f

i
and g

i
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i
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Equations (15) are di!erential equations with a retarded argument. Solving them
in a given succession in the successive intervals of the argument z, the right-hand
sides of these equations are always known. The non-linear equation is solved
numerically by means of the Runge}Kutta method, and the linear di!erential
equations are solved using the method of "nite di!erences. Having obtained from
equation (15) the functions f

i
and g

i
and their derivatives one can determine

displacements strains and velocities in an arbitrary cross-section of the shafts at an
arbitrary time instant utilizing relations (14). Non-linear equations (15) can be
solved only numerically while linear discrete-continuous systems could be treated
numerically as well as analytically [1, 10].

4. NUMERICAL RESULTS

In numerical investigations amplitude}frequency curves for angular
displacements and for the moment M

sp
are determined for the two-mass and

three-mass torsional systems. The local non-linearity in these systems has the
characteristic of a soft type. Some comparable calculations are presented in
reference [1] for the single-mass system in the case of a hard characteristic.
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The external moment M (t) appearing in equations (15), similar to reference [1], is
assumed in the form

M (t)"M
0
sin (pt), (17)

where p is a non-dimensional loading frequency. We focus on the solution in steady
states. It should be pointed out that the wave method enables one to perform
numerical solutions in a transient and in a steady state. Solutions in in transient
states for linear systems are presented in reference [10].

Non-linear e!ects in the considered system are caused directly by the non-linear
moment M

sp
(t) occurring in the cross-section x"0 described by functions (1)} (4).

On the other hand, the non-linear e!ects are also connected with the amplitude M
0

of the external moment and with the external and internal damping. In the
performed numerical analysis damping coe$cients are assumed to be constant,
equal to d

i
"D

i
"0)1.

The polynomial function (1) consists of the linear and non-linear terms
represented by coe$cients k

1
and k

3
respectively. In numerical calculations the

coe$cient k
1

is "xed, while k
3

can vary. If k
3
(0 then we propose to use functions

(2)}(4) also with coe$cients A and B calculated from (5) for the given values of
k
1

and k
3
. One can notice that polynomial functions (1) for k

3
(0 and the

sinusoidal functions (2) have their extremes. They can be useful for the values of h
1

between these extremes where functions (1) and (2) are ascending functions. No
limits of such a type are noted for the hyperbolic function (3) and the exponential
function (4).

Numerical results given below are exemplary. In reference [1] among others, the
amplitude}frequency curves are determined in various shaft cross-sections. All
diagrams in the present paper concern the cross-section x"0 where the non-linear
discrete element is taken into account. The discussion is focused on the e!ect of this
non-linear element having the characteristic of a soft type on displacements in
x"0 and on the non-linear moment M

sp
. Suitable numerical results were

performed for the two-mass and three-mass torsional systems.

4.1. TWO-MASS TORSIONAL SYSTEM

Numerical calculations for the two-mass torsional system, according to results
presented in reference [1], are performed using equations (15) with the following
basic parameters

K
r
"0)05, k

1
"0)05, N"1, d

i
"D

i
"0)1, E

2
"0)8. (18)

In Figure 2 amplitude}frequency curves for the angular displacement in the
cross-section x"0 are plotted out with k

3
"!0)005, M

0
"0)03, 0)1, 0)15 and

p)1)5 using four functions (1)} (4) for the description of the non-linear moment
M

sp
. The diagrams include two resonant regions (u

1
"0)126, u

2
"0)351). In

further resonant regions e!ects of the local non-linearity were not observed. For
M

0
"0)03 in the "rst resonant region the highest amplitudes are obtained for the

function (4) and the smallest ones for the functions (1) and (2). The solution for all
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Figure 2. Amplitude}frequency curves for angular displacements in x"0 for the two-mass system
with k

3
"!0)005, M

0
"0)03, 0)1, 0)15 with non-linear functions (1)}(4).

non-linear functions practically, give the same results in the second resonant region.
When M

0
"0)1 and 0)15 the application of functions (3) and (4) results in

practically identical amplitude}frequency curves. These curves also contain the
curves obtained for functions (1) and (2) within their application ranges. The
maximum displacement amplitudes for the solution being a harmonic function are
marked by stars and spots for the polynomial function (1) and the sinusoidal
function (2), respectively. These marks de"ne the application ranges of the functions
(1) and (2). They occur in the both considered resonant regions.

Amplitude}frequency diagrams for the non-linear moment M
sp

are plotted out in
Figure 3 for k

3
"!0)005 and M

0
"0)03, 0)15. When M

0
"0)03, the maximal

amplitudes are achieved with functions (1), (2) and the minimal ones with function
(4) in the both considered resonant regions. The same conclusion is also valid for
higher values of the amplitude of the external moment. The exceptions concern
cases when the amplitude M

A
achieves the maximums of the non-linear moment

M
sp

described by (1)} (4). Then the solutions with functions (3) and (4) from
the &plateau', while the solution with function (1) begins to diverge to in"nity
and the solution with function (2) is non-harmonic. Stars and spots on the
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Figure 3. Amplitudes of the moment M
sp

for the two-mass system for k
3
"!0)005, M

0
"0)03,

0)15 with non-linear functions (1)} (4).

amplitude}frequency curves in Figure 3 indicate the maximum amplitudes M
A

for
the harmonic solutions determined when the polynomial function (1) and the
sinusoidal function (2) are used.

The application ranges of functions (1) and (2) are investigated for k
3
"!0)0005,

!0)001, !0)005, !0)01. Suitable curves are marked by dashed and continuous
lines in Figure 4. These curves determine the amplitudes of the external moment
(17) below which numerical solutions behave as harmonic functions with the period
equal to the period of the external moment. The smallest values for M

0
are

acceptable in the neighbourhood of the resonances. From Figure 4 it also follows
that for the "xed k

3
the application ranges are slightly wider in the case of the

sinusoidal function (2). It is connected with the fact that the function M
sp

has higher
maximum values when the sinusoidal function (2) is applied. Besides, there exists
the interval of p where admissible values of M

0
increase in a linear manner when

function (1) is assumed. This interval occurs between the "rst and the second
resonances, Figure 4.

No restrictions similar to those connected with the application of the non-linear
functions (1) and (2) have been found in the case of functions (3) and (4). Thus, the
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Figure 4. Application ranges of the sinusoidal function (continuous lines) and polynomial function
(dashed lines) for the two-mass system with k

3
"!0)0005, !0)001, !0)005, !0)01.

non-linear functions (3) and (4) can be used in the discussion of the e!ect of various
parameters on the dynamic behaviour of torsional systems. The solution with the
both functions are similar. In Figure 5 the e!ect of the parameter k

3
on the

amplitude of the angular displacements in x"0 of the two-mass system is shown.
For this purpose equations (15) are solved with the hyperbolic tangent function (3)
for k

3
"0, !0)0005, !0)001, !0)005, !0)01 and M

0
"0)1. From Figure 5 it

follows that the maximal displacement amplitudes increase with the decrease of
k
3

in the "rst resonant region while in the second resonant region they decrease
with the decrease of k

3
.

4.2. THREE-MASS TORSIONAL SYSTEM

Numerical calculations for the three-mass torsional system are performed using
equations (15) with the following basic parameters [1],

K
r
"0)05, k

1
"0)05, N"2, l

1
"l

2
"1,

d
1
"D

i
"0)1, E

2
"E

3
"0)8, B

2
"1. (19)
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Figure 5. E!ect of the parameter k
3

on displacement amplitudes for the two-mass system with
M

0
"0)1, k

3
"0, !0)0005, !0)001, !0)005, !0)01 for the hyperbolic tangent function.

In Figure 6 amplitude}frequency curves for the angular displacement in the
cross-section x"0 of the three-mass system are plotted out with k

3
"!0)005,

M
0
"0)03, 0)1, 0)15. Four functions (1)} (4) were used for the description of the

non-linear moment M
sp

. The diagrams include three resonant regions (u
1
"0)089,

u
2
"0)261, u

3
"0)376). In further resonant regions, no non-linear e!ects were

observed. For M
0
"0)03 in the "rst and the second resonant regions the highest

amplitudes are obtained for function (4) and the smallest ones for functions (1) and
(2). The solution for all non-linear functions give practically the same results in the
third resonant region. When M

0
"0)1 and 0)15 the application of functions (3) and

(4) results in practically identical amplitude}frequency curves apart from the
resonances. These curves contain also the curves obtained for the functions (1) and
(2) within their application ranges. Similarly, as in the case of the two-mass systems,
the maximum displacement amplitudes for the harmonic solution are
correspondingly marked by stars and spots for the polynomial function (1) and the
sinusoidal function (2). Now, these marks de"ning the application ranges of
functions (1) and (2) occur in the all three considered resonant regions.
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Figure 6. Amplitude}frequency curves for angular displacements in x"0 for the three-mass
system for k

3
"!0)005, M

0
"0)03, 0)1, 0)15 with non-linear functions (1)}(4).

The amplitude}frequency diagrams for the moment M
sp

according to functions
(1)}(4) are plotted out in Figure 7 for k

3
"!0)005, and M

0
"0)3, 0)15. For

M
0
"0)03, in the all three resonant regions the smallest amplitudes are obtained for

function (4) and the highest ones for functions (1) and (2). When M
0
"0)15 this

remains true until the assumed function of the moment M
sp

achieves its maximum.
Then, the solution for function (1) diverges to in"nity, for function (2) is
non-harmonic and the diagrams of the solutions for functions (3) and (4) form the
&&plateau''. That is seen clearly in the "rst resonant region in Figure 7. The maximum
value of the moment for the non-linear spring is equal to 0)0608 for function (1) while
A"0)0645 for the remaining functions. These values are independent of the number
of shafts and the number of rigid bodies in the discrete-continuous model. They are
dependent only on assumed parameters k

1
, k

3
occurring in the non-linear functions

describing the moment M
sp

(see Figures 3 and 7).
The application ranges of the polynomial function (1) (dashed lines) and the

sinusoidal function (2) (continuous lines) are presented in Figure 8 for
k
3
"!0)0005, !0)001, !0)005, !0)01. Similarly, as in the case of the two-mass
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Figure 7. Amplitudes of the moment M
sp

for the three-mass system for k
3
"!0)005, M

0
"0)03,

0)15 with non-linear functions (1)} (4).

system, the strongest restrictions occur in the neighbourhood of resonances and
admissible values of M

0
decrease with the decrease of k

3
. For the "xed p the

acceptable M
0

is higher for the sinusoidal function. In the case of function (1),
between the "rst and the second resonances there exists the interval of p where these
values increase in a linear manner.

The investigations of the e!ect of various parameters characterizing the
discrete-continuous model of torsional systems can be easily performed using
functions (3) and (4). For example, in Figure 9 the e!ect of the parameters k

3
,

representing the local non-linearity, on displacement amplitudes in x"0 is shown.
From Figure 9 it follows that in the case of the three-mass system, in the "rst and
second resonant regions, the maximal amplitudes increase with the decrease of k

3
while in the third resonant region they increase with the increase of k

3
.

5. FINAL REMARKS

In this paper it is shown how various non-linear functions can be incorporated in
the dynamic analysis of the discrete-continuous models of multi-mass systems
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Figure 8. Application ranges of the sinusoidal function (continuous lines) and polynomial function
(dashed lines) for the three-mass system with k

3
"!0)0005, !0)001, !0)005, !0)01.

torsionally deformed having the local non-linearity with the characteristic of a soft
type. In the study the third-order polynomial function, the sinusoidal function, the
hyperbolic tangent function and the exponential function are proposed for the
description of the assumed local non-linearity. It is found that the polynomial and
sinusoidal functions have some limits for their application while the last two
functions can be applied, when the use of the polynomial and sinusoidal functions
leads to solutions losing physical meaning. Within the application ranges of the
polynomial function, the solutions for all considered non-linear functions coincide
practically.

The numerical calculations are performed for selected parameters describing the
two-mass and three-mass torsional systems. Analogous calculations can be
executed for systems with other parameters and having more than three rigid
bodies. The increase in the number of rigid bodies in the discrete-continuous model
of the torsional system will lead to conclusions similar to those given in the present
paper. Appropriate diagrams of numerical solutions will include more resonant
regions with non-linear e!ects and will be more complicated.

NON-LINEAR VIBRATIONS OF A TORSIONAL SYSTEM 387



Figure 9. E!ect of the parameter k
3

on displacement amplitudes for the three-mass system with
M

0
"0)1, k

3
"0, !0)0005, !0)001, !0)005, !0)01 for the hyperbolic tangent function.
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